TWO COMMENTS ON DVORETZKY'S SPHERICITY THEOREM

BY

E. G. STRAUS

ABSTRACT

For any two positive integers k, i and any $\varepsilon > 0$ there exists an $N(k, l, \varepsilon)$ so that given any *l* convex bodies C_1, \ldots, C_i symmetric about the origin in E^n with $n \geq N$ there exists a subspace E^k so that each C_i intersects E^k , or has a projection into E^k , in a set which is nearly spherical (asphericity $\langle \epsilon \rangle$). The measure of the totality of E^k which intersect a given body in E^n in a nearly ellipsoidal set is considered and an affine invatiant measure is introduced for that purpose.

A convex set C in $Eⁿ$ which is centrally symmetric about the origin is said to have *asphericity*

$$
\alpha(C) = 1 - \min_{x \in bdC} ||x|| / \max_{x \in bdC} ||x||
$$

where bdC is relative to the subspace spanned by C. Dvoretzky [1] proved that: *For every positive integer k and every* e>0 *there exists a number* $N(k,\varepsilon)$ (e.g., $N(k,\varepsilon)=\exp(2^{15}\varepsilon^{-2}k^2\log k)$), so that for $n\geq N$, every convex *body (compact convex set with non-empty interior) in E" which is symmetric about the origin there exists a subspace* E^k with $\alpha(C \cap E^k) < \varepsilon$.

In a recent paper [2] Dvoretzky remarks that the same result holds if we consider the projection $C | E^k$ of C into E^k instead of $C \cap E^k$, since

$$
\alpha(C \,|\, E^k) = \alpha(C^* \cap E^k)
$$

where C^* is the polar body of C. However he states as an unsolved question whether there is an $N'(k,\varepsilon)$ so that for $n \geq N'$ there exists an E^k for which both

$$
\alpha(C \cap E^k) < \varepsilon \text{ and } \alpha(C \mid E^k) < \varepsilon.
$$

To give an affirmative answer to this question we prove the following.

THEOREM. For each pair of positive integers k, l and every $\varepsilon > 0$ there exists an $N(k, l, \varepsilon)$ so that for $n \ge N$ and any *l*-tuple of convex bodies $C_1, ..., C_l$ in $Eⁿ$ symmetric about the origin, there exists a subspace E^k so that

$$
\alpha(C_i \cap E^k) < \varepsilon \qquad \qquad i = 1, \dots, l \, .
$$

Here $N(k,1,\varepsilon) = N(k,\varepsilon)$ and $N(k,l+1,\varepsilon) \leq N(N(k,l,\varepsilon),\varepsilon)$.

Received February 6, 1964.

Proof. For $l = 1$ this is Dvoretzky's theorem. Assume the theorem true for l . Then for $n \geq N(N(k, l, \varepsilon), \varepsilon)$ there exists an $E^{N(k, l, \varepsilon)}$ so that $\alpha(C_1 \cap E^{N(k, l, \varepsilon)}) < \varepsilon$ and by the induction hypothesis applied to $C_i' = C_i \cap E^{N(k,l,\epsilon)}$, $i = 2, ..., l + 1$; there exists an $E^k \subset E^{N(k,l,e)}$ so that $\alpha(C_i' \cap E^k) = \alpha(C_i \cap E^k) < \varepsilon$ for $i = 2, ..., l$. On the other hand we have $\alpha(C_1 \cap E^k) \leq \alpha(C_1 \cap E^{N(k, i, \epsilon)}) < \varepsilon$ so the result holds with $N(k, l + 1, \varepsilon) = N(N(k, l, \varepsilon), \varepsilon)$.

Dvoretzky's question is now answered in the affirmative for $C_1 = C$, $C_2 = C^*$, $l = 2$. The bound computed here grows very rapidly since it involves *l*-fold iteration of an already very rapidly increasing function of k and $1/\varepsilon$.

A second question raised in [2] can be answered in the negative. Dvoretzky proves that it is not possible to give a uniform positive lower bound for the Haar measure of the set of all k-planes ($k \ge 2$) which intersect a convex body C in $Eⁿ$ in a set of asphericity $\lt e$. His example is an ellipsoid of revolution with a very large axis on its axis of revolution. He asks therefore whether such a uniform lower bound could exist if asphericity is replaced by *unellipsoidality,* that is the minimum asphericity of all affine transforms of the set.

As an example of a body for which this is not the case we consider the union of two spherical caps:

$$
x_1^2 + \dots + x_{n-1}^2 + (x_n - 1 + \delta)^2 \le 1, \ x_1^2 + \dots + x_{n-1}^2 + (x_n + 1 - \delta)^2 \le 1; \quad 0 < \delta < 1.
$$

Every E^2 intersects C in a lens, which in terms of Cartesian coordinates (y_1, y_2) on $E²$ can be given by

Here

$$
y_1^2 + (y_2 - r + \delta')^2 \le r^2, \ y_1^2 + (y_2 + r - \delta')^2 \le r^2.
$$

$$
r^2 = 1 - (1 - \delta)^2 + (r - \delta')^2
$$

$$
r - \delta' = (1 - \delta) \cos \gamma
$$

where γ is the angle between E^2 and the x_n -axis. Thus for δ sufficiently small we have δ'/r arbitrarily small for all γ outside an arbitrarily small neighborhood of $\pi/2$. Thus all we need is the following.

LEMMA. *The lens*

$$
x^{2} + (y - 1 + \delta)^{2} \le 1, \ x^{2} + (y + 1 - \delta)^{2} \le 1; \ 0 < \delta < 1
$$

has unellipsoidality > $1/10 + O(\sqrt{\delta})$.

Proof. Because of the symmetry of the lens it suffices to consider diagonal transformations of the form $x' = x$, $y' = cy$. The radius in the x-direction remains $\sqrt{2\delta}+O(\delta)$ while the radius in the y-direction becomes c δ . Thus, if the unellipsoidality is $\leq 1/10 + O(\sqrt{\delta})$ we have $c\delta \leq (10/9)\sqrt{2\delta}+O(\delta)$. Now the point $(\sqrt{\delta}, \delta/2 + O(\delta))$ on the lens goes into $(\sqrt{\delta}, c\delta/2 + O(\sqrt{\delta}))$ whose distance from the origin is

$$
\sqrt{\delta + c^2 \delta^2 / 4} + O(\delta) \le \sqrt{131 \delta / 81} + O(\delta) = \sqrt{131/162} \sqrt{2\delta} + O(\delta) \le (9/10) \sqrt{2\delta} + O(\delta)
$$

which proves the lemma.

It may perhaps be argued that the question is not a well posed one since unellipsoidality is an affine invariant while the measure on the set of planes is not. Indeed it is easy to see that any neighborhood of an E^k in E^n can be transformed into a set of Haar measure $> 1 - \delta$ for any $\delta > 0$ by suitable stretching in the directions perpendicular to E^k . Hence for $n \ge N(k,\varepsilon)$ any convex body C in E^k which is centrally symmetric about the origin is affine equivalent to a C' for which the Haar measure of all E^k so that $E^k \cap C'$ has unellipsoidality \lt ε is greater than $1 - \delta$. By the same token, if C is not an ellipsoid, let β be the maximal unellipsoidality of $C \cap E^k$ for all E^k ; then there is an affine equivalent C' of C so that the Haar measure of the E^k for which the unellipsoidality of $C' \cap E^k$ exceeds $\beta - \varepsilon$ is greater than $1 - \delta$.

Thus, in order to make the question more meaningful we should replace Haar measure by an affine invariant measure (such possibilities are indicated in [2]).

DEFINITION. Given a convex body C in $Eⁿ$ which is centrally symmetric about the origin. We define affine invariant measures $\mu_{n,k}(C;S_k)$ on sets S_k of k-subspaces as follows

(i) $\mu_{n,1}(C; S_1)$ is the Lebesgue measure of $\cup_{S_1}(C \cap E^1)$ divided by the Lebesgue measure of C.

(ii) $\mu_{n,k}(C; S_k) = \int \ldots \int \chi(E_1^1, \ldots, E_k^1) d\mu_{n,1}(C; E_1^1) \ldots d\mu_{n,1}(C; E_k^1)$

where x is 1 if $E_1^1, ..., E_k^1$ lie in one of the E^k in S_k and 0 otherwise, and the integral is extended over all k-tuples $(E_1^1, ..., E_k^1)$. It is now clear that for any affine transformation T we have $\mu_{n,k}(TC; TS_k) = \mu_{n,k}(C; S_k)$.

PROBLEM. Does there exist a number $N(k, \varepsilon, \delta)$ so that for every convex *body* C symmetric about the origin in E^n with $n \ge N$ the set S_k of E^k in E^n with *unellipsoidality of* $C \cap E^k$ *less than a satisfies* $\mu_{n,k}(C, S_k) > 1 - \delta$?

REFERENCES

1. Dvoretzky, A. 1961, Some results on convex bodies and Banach spaces, *Proc. Intl. Symposium onLinear Spaces,* Pergamon Press and lerusalem Academic Press, pp. 123-160.

2. — , 1963, Some near-sphericity results, *Proc. Symposia in Pure Math.* VII (Convexity), pp. 203-210.

UNIVERSITY OF CALIFORNIA) Los ANGELES